The Energy Professional’s Guide to Data Loggers & Building Performance

AN INTRODUCTION TO DATA LOGGERS
- Components of Energy Use

DATA LOGGERS IN BUILDING PERFORMANCE MONITORING
- Commissioning & Retrocommissioning
- HVAC System Diagnostics & Troubleshooting
- Measurement & Verification
- Load Profiling & Load Disaggregation
- Emerging Technology Research
- Renewable Resource Assessment

APPLYING DATA LOGGERS
- Lighting Systems
- HVAC Performance
- Motors
- Rooftop Units
- Supply Air Temperature
- Air Economizers
- Indoor Environmental Quality
- Plug Loads

MONITORING PLANS
- Sample Size & Selection
- Monitoring Duration

DATA LOGGER INSTALLATION
- Safety
- Quality Assurance and Secondary Measurements

DATA EVALUATION
- Data Manipulation In Excel
- Graphing
- Synchronizing Observations
- Analyzing Runtime Data
- Common Equations

CHOOSING DATA LOGGERS
- Measurement Accuracy
- Software and Ease of Configuration
- Communications
- Battery Life
- Memory
- Cost of Ownership
- Product Support

REFERENCES
- Other informational resources available from Onset
An Introduction to Data Loggers

“I just think the only way we are really going to get to the point we need to get to is to start collecting the real data.”

This comment, made in 2009 by New York Public Service Commission chairman Garry Brown, conveys a growing sentiment about the need for solid, objective data on building energy performance.

When it comes to determining actual building performance, it all comes down to data. Data takes the guesswork out of energy management, and drives decisions as to what energy conservation measures need to be taken in a facility.

Portable data loggers are ideal tools for collecting building performance data. These affordable, compact devices can help establish energy performance baselines, and reveal a building’s performance under real-world, rather than modeled, circumstances. They offer fine-tuned visual performance feedback, measuring changes in temperature and energy use when people enter and exit a building, turn on and off lights, or run heating and cooling systems. They can also be used to help ensure that indoor air quality and comfort are maintained in a building.

By monitoring and recording simple variables like temperature, RH, CO2, and light or motor On/Off, data loggers can help detect and document whether “too hot or too cold” comfort complaint conditions are real, whether a facility is threatened by conditions suitable for mold growth, and whether energy savings can be realized through ensuring that lights are off when areas of the building are unoccupied.

More sophisticated measurements – such as AC Current, AC Voltage, power demand (kW), energy consumption (kWh), pressure, and differential air pressures – provide valuable information for troubleshooting HVAC/R systems, sub-metering, building commissioning, and measurement & verification of energy savings.

Typically, data loggers are battery-operated, stand-alone measurement tools containing a microprocessor, memory, and sensors for measuring and recording one or more variables over time. They are typically quite small, enabling them to be deployed almost anywhere throughout a building, with some designed to work in outdoor or more hostile industrial environments.
Some data loggers have internal sensors, so that measurements are made only at the logger location, while others utilize sensors on external cables that allow for monitoring at some distance from the data logger itself. A data logger may offer a combination of internal and external sensors, as well as external channels accepting pulse, 4-20mA, or DC voltage inputs from other sensors for even greater flexibility.

Data loggers typically operate unattended for hours, days, or months at a time. Specialized software is used to configure the logger (select sampling intervals, synchronize logger and computer clocks, etc.) and to offload the recorded data from the logger to a Windows or MAC computer for graphing and analysis.

It is important to note that, in addition to data loggers that communicate with computers via USB, there are a number of web-based data logging options available that provide users with convenient access to data remotely over the Internet via GSM cellular, Wi-Fi, and Ethernet-based communications. Bluetooth Smart enabled loggers, which transmit data wirelessly to mobile devices over a 100-foot range, are another option. They’re especially useful in applications where data loggers need to be deployed in hard-to-reach spaces or limited-access areas within a facility.

Components of Energy Use

The energy use of any building or component can be divided into two parts: the rate of energy use and the duration of that energy use. The energy use rate for electricity is expressed as Watts or kiloWatts; for thermal loads, the rate may be expressed as thousand British Thermal Units per hour (MBTUH). In the simplest cases, the rate of energy use remains constant while the duration varies. The energy use is then the product of the two components.
During commercial energy audits, data loggers typically monitor the rate of energy use for short periods; the total energy use is the sum of energy consumed during each monitored interval.

Simple items such as lighting fixtures and motors under constant load can be easily evaluated with data loggers by taking a single power measurement and then monitoring the runtimes.

For many systems of interest, the rate of energy use changes, often as a function of some other driving variable. Examples include cooling loads on a chiller, motor fan power on a variable air volume (VAV) system, and dimmable lighting fixtures. In these cases, both the energy use rate and the duration must be monitored. During commercial energy audits, data loggers typically monitor the rate of energy use for short periods; the total energy use is the sum of energy consumed during each monitored interval.

Information from multiple data loggers or concurrent building-automation system (BAS) data can be used to explore and establish relationships between different variables. Examples include relationships between cooling-energy use and outdoor air temperature, fan power in a VAV system as a function of return air temperature, economizer damper position, and indoor temperature as a function of time-of-day.

Understanding the nature of the load is fundamental to selecting the proper variables to measure and the appropriate measurement interval. The likely variation of the load, what drives that variation, and how quickly it varies all determine the selection of monitored points and measurement frequency.
Data Loggers in Building Performance Monitoring

Data loggers provide valuable information on building-system behavior that may not be available from the building-automation system (BAS) or where a BAS does not exist. They can also be used to confirm operation of the BAS itself as sensors or actuators may not be accurate or functional. Following are some of the most common building performance applications where data loggers are needed (specific use cases are discussed later):

Commissioning & Retrocommissioning

Building commissioning (Cx), retrocommissioning (RCx), and monitoring-based commissioning (MBCx) are all variations of building performance optimization. Modern buildings are complex and dynamic structures that rely on computer-based systems to control the heating, cooling, ventilation, lighting, and other critical systems. To minimize energy use and maximize comfort, these systems must work and continue to work properly.

LEED O&M: Existing Buildings encourages initial and ongoing commissioning activities. The Energy & Atmosphere category encourages or requires investigation and diagnostics of a building’s major loads, control system, lighting, and HVAC equipment. Data loggers can supplement a control system or provide information on small buildings where control systems may not provide sufficient information.

HVAC System Diagnostics & Troubleshooting

Data loggers provide information to diagnose the cause of comfort complaints and HVAC system problems. Information from the building-automation system (BAS) may be unavailable or unreliable, requiring data loggers to observe system or building behavior.

Measurement & Verification

Systems that use the most energy represent the greatest efficiency opportunities. Determining energy use by function—lighting, cooling, fan, heating, plug loads—can identify cost-effective efficiency projects.

Load Profiling & Load Disaggregation

Often, only the total building energy use is known but the load profile (load variation as a function of time) is not known. Data loggers can be used to observe a building load profile to determine when systems turn on and off or to compare the load to another variable such as temperature or occupancy. A building load profile is an integral part of calibrating a simulation model.

Systems that use the most energy represent the greatest efficiency opportunities. Determining energy use by function—lighting, cooling, fan, heating, plug loads—can identify cost-effective efficiency projects.

LEED O&M: Existing Buildings, Energy & Atmosphere, Advanced Metering credit requires disaggregating the building load into its major components. If the existing building-automation system (BAS) is not adequate and expansion is being considered, monitoring different pieces of equipment can identify which points are the most cost-effective to connect to the BAS to achieve the required monitoring rate.

Emerging Technology Research

The acceptance of new energy-efficient technologies into the marketplace is often hampered by lack of experience and supportable performance claims. People are skeptical of anything new. Data loggers can be used to monitor the performance of new and emerging technologies such as transpired solar collectors, occupancy-sensor thermostats, variable speed drives for unconventional applications, and anything with easily-measured energy inputs or outputs.

Renewable Resource Assessment

Before installing expensive renewable energy systems, it may be helpful to identify the local resource. Although solar and wind resources are available from reliable sources, these values are usually regional long-term averages that have intentionally avoided local factors that may impair (or enhance) resource availability. Geographic features such as hills and valleys may alter wind resources at a specific site; local weather conditions or nearby buildings may affect the amount of solar radiation that can be effectively collected. Data-logging weather stations can be used for short-term monitoring to compare site-specific conditions relative to weather data from a nearby weather station. This provides information needed to determine local correction factors and assess the expected long-term performance potential of a system.
Applying Data Loggers

The diversity of available sensors and selection of measurement intervals make data loggers incredibly flexible. Almost any energy-consuming device or comfort condition can be quantified. Following are some common examples.

Lighting Systems

Lighting energy use is defined by two quantities: power (Watts) and operating hours. The power draw of individual lighting fixtures is easily measured or can be based on manufacturer’s specifications, but operating hours are more difficult to establish. Savings based on estimated operating hours have a high degree of uncertainty as human behavior is often random.

For efficiency projects involving fixture upgrades where operating hours remain constant, savings are defined as:

\[
\text{kWh}_{\text{Saved}} = (\# \text{ fixtures}) \left(\frac{1 \text{ kW}}{1,000 \text{ W}} \right) (W_{\text{Pre}} - W_{\text{Post}})(\text{Hours}_{\text{Operating}})
\]

Operating hours are typically measured before performing the upgrade.

For projects that combine efficiency improvements with lighting controls that reduce operating hours (occupancy sensors or BAS controls), savings are defined as:

\[
\text{kWh}_{\text{Saved}} = (\# \text{ fixtures}) \left(\frac{1 \text{ kW}}{1,000 \text{ W}} \right) (W_{\text{Pre}} * \text{Hours}_{\text{Pre}} - W_{\text{Post}} * \text{Hours}_{\text{Post}})
\]

It is necessary to separate the pre- and post-retrofit operating hours to avoid double counting the savings.

A simple and low cost method to determine the potential savings from runtime reduction is to use a HOBO UX90-005 or -006 occupancy/light logger. This logger combines a passive infrared occupancy sensor plus a lighting runtime logger. By recording when the lights are on as well as when a space is occupied (or not), the number of hours that the lights can be turned off is easily quantified. The savings are calculated as:

\[
\text{kWh}_{\text{Saved}} = (\# \text{ fixtures}) \left(\frac{1 \text{ kW}}{1,000 \text{ W}} \right) (W_{\text{Fixture}})(\text{Hours}_{\text{No Controls}} - \text{Hours}_{\text{Controls}})
\]

In practice, lighting savings are calculated by taking a building lighting inventory and assigning each item to a space type with similar operating hours. Common space types might be open office, private office, conference room, common area, and storage. Time-of-use lighting loggers, such as Onset HOBO UX90-002 Light On/Off loggers, are then deployed for two to four weeks to measure the operating hours of a sample number of fixtures for each space type. The average operating hours for each space type are used in the previous equations to calculate the savings from each space type and then extrapolating the results to the entire building.
Because many HVAC components – fans, compressors, cooling towers, boilers – are variable load devices, data loggers provide valuable performance information.

Electrical loads are the easiest parameters to measure. Applications requiring thermal load quantification require precision temperature sensors and flow meters to produce meaningful results.

Calculating electrical power from measured values on direct current (DC) circuits is easy: power in Watts is equal to volts multiplied by current in Amperes. For alternating current (AC) circuits, the current is not always in phase with the voltage and the previous relationship is not exact. For inductive loads such as motors and magnetic ballasts, the current lags behind the voltage. This phase shift can be expressed in units called power factor, which provides the relationship between true power, voltage, and current. For single-phase AC circuits, the true power in Watts is:

\[kW_{AC} = V \times A \times PF \times \left(\frac{1}{1000} \right) \]

Power factor of a motor ranges between 0.5 and 0.9 depending on the motor load. The power factor listed on the nameplate is at full-load conditions and decreases at less than full load. For this reason, motor measurements requiring accurate power values require simultaneous voltage and current measurements with an instrument that detects the phase shift between the voltage and current. If motor status or relative power will provide adequate information, current measurements are sufficient.

Another factor that complicates motor measurement is the presence of total harmonic distortion (THD). Switching power supplies such as those in variable speed drives, electronic ballasts, and computers produces a current waveform that is synchronized with the voltage but is ‘chopped’ at frequencies greater than 60 Hz. The presence of total harmonic distortion degrades the accuracy of some current transducers. Where accurate power measurements are required, use a true power transducer that can retain accuracy in the presence of THD.
Most motors greater than 5 HP use three-phase AC power. There are two configurations available: delta and wye. The delta configuration uses three conductors while the wye configuration uses four – the fourth conductor is the neutral.

In a delta configuration, voltage is measured line-to-line: VAB, VBC, VAC. Because the instantaneous sum of all currents must be zero, only two currents (and their corresponding voltages) need to be measured using the third leg as the reference. In a wye configuration, voltage is measured line-to-neutral: VAN, VBN, VCN.

When working with individual motors, it may be acceptable to assume that the phases are balanced—all three voltages and currents are equal—but this assumption should be checked. If the phases are balanced, the measured line power in a delta circuit is:

$$kW_{AC} = \sqrt{3} \times V \times A \times PF \times \left(\frac{1 kW}{1,000 W} \right)$$

while for a wye circuit it is:

$$kW_{AC} = 3 \times V \times A \times PF \times \left(\frac{1 kW}{1,000 W} \right)$$

The factors $\sqrt{3}$ and 3 are derived from the relationships between the phases. The presence of power factor means that monitoring voltage and current with separate data loggers will not provide accurate power measurements—a data logger such as the H22 HOBO Energy Logger with a kWh transducer must be used if high accuracy is required (see example below).
Motors

The easiest parameter to monitor is motor runtime. This can be accomplished by either using a vibration or magnetic field status data logger or by measuring the input current. A current sensor detects motor status and reports the data at defined intervals. When the current is greater than zero, the motor is considered “on.” Vibration and magnetic field loggers, such as Onset HOBO UX90-001 or -004 State and Motor On/Off loggers, record when the state changes between on and off. Translating on/off recorded data from the logger into operating hours is accomplished with simple spreadsheet calculations. However, allocating operating hours into time-of-use or day-of-week periods requires supplemental manipulations.

While a building-automation system (BAS) reports the intended operational status of equipment, it is common to find equipment accidentally or intentionally bypassed. Data loggers provide independent assessment of actual status. They can be used to verify that air handlers are shutting off at night, determine compressor runtime and staging sequence, measure boiler or furnace runtime, and reveal problems with control logic such as having hot and chilled water pumps run simultaneously.

Rooftop Units

Rooftop units are often installed in buildings that lack building-automation systems. Monitoring the operating current will show the operating schedule (on/off) and differentiate between fan-only and cooling mode. The current may also indicate the number of operating compressors in a multi-compressor system.

Runtime and operating current increase at higher outdoor air temperatures. Some of this increase is due to greater cooling load and the balance is due to the condenser rejecting heat to a higher ambient temperature. Comparing the operating current to outside air temperature using statistical models can provide insight into how load changes with temperature. If statistically valid cooling load models are desired, then true power, rather than current, should be monitored using data loggers.

While it is theoretically possible to determine air-conditioning performance under real operating conditions, in practice this is very difficult. Where savings are to be estimated from rooftop unit replacement, it is common practice to use the manufacturer’s performance specifications coupled with monitored runtime or measured power.
Supply Air Temperature

For energy efficiency reasons, the cooling supply air temperature may be modulated so that the coldest air is delivered when cooling load is the greatest. This strategy can improve chiller performance at part-load conditions and reduce the amount of reheat required in a variable air volume (VAV) system. If the BAS-reported supply air temperatures cannot be trusted, data loggers with external temperature sensors placed in the duct work can report supply temperatures either at the air handler or the zone level.

Air Economizers

Large buildings with high internal loads often need to be cooled even when outside air temperatures are mild. Air-side economizers take advantage of cool air by substituting outside air for return air. Economizers can reduce or eliminate the need for mechanical cooling and thus reduce overall cooling energy costs. When economizers do not work properly, they either miss opportunities to provide free cooling or they remain fully open and significantly increase heating and cooling energy load. Improperly functioning economizers are a common source of energy waste, but fortunately are easily diagnosed and repaired.

Economizers can reduce or eliminate the need for mechanical cooling. When economizers do not work properly, they either miss opportunities to provide free cooling or they remain fully open and significantly increase cooling-energy use.
There are two types of economizer controls: temperature and enthalpy. Temperature-controlled economizers change status based on return supply and return air temperatures. Enthalpy-controlled economizers consider both outside air temperature and humidity and are preferred in humid climates.

Three data loggers are required to evaluate economizer performance, to monitor: return air (RAT), outside air (OAT), and mixed air (MAT). Instead of plotting three temperatures as a function of time, it is useful to plot the difference between the mixed air temperature and the return air temperature (MAT – RAT) as a function of the difference between outside air temperature and return air temperature (OAT – RAT). The slope of the resulting line is the outside air fraction (OAF), which is defined as:

\[
\text{OAF} = \frac{\text{MAT} - \text{RAT}}{\text{OAT} - \text{RAT}}
\]

A properly functioning economizer will deliver 100% outside air when the outside air can meet some or all of the cooling load. This will appear as a line with a slope of 1. When the outside air temperature is greater than the return air temperature, the economizer should close to the minimum air position of approximately 20% – the actual value depends on the required minimum air quantity. Deviations from this control strategy indicate problems with temperature or humidity sensors, actuator linkages, leaky dampers, or improper control strategies.

The following example is from a rooftop unit in Denver, Colorado in December. The malfunctioning economizer is delivering 100% outside air continuously. When temperatures are below 50º F, not only is there no cooling load, but excess outside air must be heated, wasting energy.

Energy savings are realized when mild outside air can satisfy the cooling load.

Air handlers are rarely configured to fully mix return and outside air ahead of the filter bank or cooling coil. Incorrect placement of the mixed air temperature sensors or incomplete mixing may bias the measurement and indicate economizer problems where none exist. It may be necessary to use data loggers with multiple sensors to measure the mixed air temperatures at different locations and average the results.
Indoor Environmental Quality

A common problem building owners and facility managers face is comfort complaints – it’s too hot or too cold. Hot and cold are relative terms and no single temperature can ever satisfy everyone. Data loggers objectively assess what the temperature is and when, providing an easy method to diagnose why space temperatures are deviating from acceptable values. A single data logger, such as an Onset HOBO UX100 Temp/RH logger, recording every 15 minutes, could show problems with warm-up or cool-down in the morning, or show that solar gain is overheating a space in the afternoon. A data logger measuring temperature at the ceiling, at chest height, and at the floor can quantify the extent of stratification caused by insufficient air movement or barriers like cubicle walls. Additional data loggers near the thermostat and inside the supply register could be used to verify that the thermostat is properly controlling the space temperature – or not – and that the correct air supply temperature is being delivered. Including humidity measurement in areas with humidity sources provides information on the ventilation or humidity control effectiveness.

ASHRAE Standard 62.1-2013 calls for specific amounts of outside air, ranging from 10 to 20 CFM per person, to be supplied to occupied spaces determined by building function and space type. Design outside air quantities are based on expected peak occupancy, which may result in excess outside air when the building is not fully occupied.

Demand-controlled ventilation (DCV), which varies outside air based on occupancy, is an improvement over fixed-rate ventilation. DCV systems measure the concentration of carbon dioxide in a building as an indicator of occupancy. DCV systems try to maintain a constant carbon dioxide level of approximately 1,000 ppm. Onset’s HOBO Bluetooth (BLE) MX1102 CO\textsubscript{2} logger can monitor carbon dioxide concentrations in a building or specific rooms and demonstrate whether a space is getting too much or too little outside air and when.
Plug Loads

As energy-efficiency standards become more aggressive and designers are working toward more efficient buildings, the next frontier will be understanding and controlling plug loads. Over the last 20 years, improvements in lighting technology have significantly reduced lighting power densities. However, these reductions have been offset by the increase in the number of data centers, computers and monitors, tablets, and cell phones in everyday use. For buildings attempting to achieve net-zero utility consumption, plug loads may one of the largest end-uses.

One reason that plug loads may consume a disproportionately large share of a building’s electricity is that they are constantly plugged in and consuming energy. Data centers operate 24/7 by design, but many other small devices are parasitic loads consuming energy even when “off.” Understanding the load profile of common equipment can help quantify the waste. For example, a 500,000 SF office building may have 4,000 personal computers. If each draws 10W in standby mode when the office is vacant, this adds $25,000 to the building operating cost every year.

Common plug load meters can be used to measure the total energy consumed during the monitoring period, but are unable to differentiate the energy used during occupied and unoccupied periods. The HOBO UX120 Plug Load Logger (intended for use on 15 AMP circuits with a working voltage of 120V AC ±10% at 50/60Hz and a max power of 1800W) can accurately measure power use down to 1W and provide a load profile showing when energy consumption occurs. Another advantage of having a load profile is the ability to assign energy costs to different time-of-use periods for more accurate cost accounting.
Monitoring Plans

Even though portable data loggers are typically inexpensive, it is not cost-effective to measure every piece of equipment that might be affected by an energy-efficiency or retrocommissioning project – there may be thousands of lighting fixtures or hundreds of variable air volume (VAV) control boxes. Nor is it practical to measure equipment for an entire year to determine baseline or operating characteristics. In typical commercial energy audits, it is far easier and cost-effective to measure a representative sample of equipment for several days or weeks and extrapolate the findings to the balance of the population and year. Following are some points to consider when developing your monitoring plan.

Sample Size & Selection

Sampling is a method of estimating a cost-effective number of items to measure in order to be assured that the results represent the entire population. The degree to which the measured samples represent the population is the precision (P). A precision of 20% indicates that the measured value is within ±20% of the true value. The corollary to precision is confidence (C), which indicates the repeatability of the measurement process. To access the reliability of a measurement, both the precision and the confidence need to be known. If a sampled measurement has a precision of 20% at 80% confidence, it means that there is an 80% probability that the measurement is within 20% of the true value. For any set of measurements, there is a trade-off between precision and confidence. Increasing the confidence decreases the precision. In the extreme, 100% confidence results in a meaningless precision.

Sampled measurements are often used to estimate lighting operating hours. Typical practice is to divide a facility into common usage groups with similar operating hours, each of which may still contain hundreds or thousands of lighting fixtures. However, most fixtures will operate on similar schedules, making sampled measurements a practical way to reliably estimate the behavior of the entire population. The number of samples required to meet any desired precision and confidence criteria is dependent on the variation within the usage group. Mathematically, this is known as the coefficient of variation (CV) and is defined as:

\[
CV = \frac{\text{Standard Deviation}_{\text{Hours}}}{\text{Average}_{\text{Hours}}}
\]

The problem with developing a sample size is that the coefficient of variation cannot be determined in advance. An educated guess about the likely CV is necessary to determine an appropriate sample size. For lighting operating hours, a CV of 0.5 is a good starting point, but for lights with occupancy sensor controllers, a CV of 0.75 might be more realistic. The assumption of coefficient of variation will strongly influence sample size and ultimately measurement cost and effort.
For very large populations where 20% precision at 80% confidence is needed, the sample size \((n)\) is calculated as:

\[
 n = \frac{1.282^2 + C_v^2}{0.2^2}
\]

The result is rounded up to the nearest integer. (The value 1.282 corresponds to an 80% confidence level, 0.2 is 20%.) The following table shows the influence the assumed \(C_v\) has on sample size.

<table>
<thead>
<tr>
<th>Application</th>
<th>(C_v) Assumption</th>
<th>Sample Size ((n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Lighting fixture power</td>
<td>0.25</td>
<td>3</td>
</tr>
<tr>
<td>• HVAC and fan operating hours under timeclock / BAS / EMCS control</td>
<td>0.5</td>
<td>11</td>
</tr>
<tr>
<td>• Rooftop unit peak demand for identical units.</td>
<td>1.0</td>
<td>42</td>
</tr>
</tbody>
</table>

When the measurements have been completed, the actual \(C_v\) can be calculated from the average and standard deviation. If the actual \(C_v\) is less than the assumed value, the desired precision and confidence levels were met. If not, the precision should be calculated based on the measured \(C_v\) and reported. The two most common errors in conducting a sampled measurement plan are:

1. Assuming an initial \(C_v\) that is not representative of the process being monitored; and,
2. Failing to calculate the actual \(C_v\) and resultant precision afterwards.

Selecting an initial \(C_v\) on which to base a sample size requires some knowledge and insight of the process being monitored. What works for lighting operating hours may be totally inappropriate for fixture power measurements. The result can be either too many samples (not cost-effective) or too much uncertainty in the results.

Failing to calculate the actual \(C_v\) and resultant precision from the monitoring results means that only half the job was completed. The assumed \(C_v\) was necessary to determine an initial sample size that meets the target precision and confidence level; it does not guarantee that those targets will be met.

A more thorough discussion on sample-size determination, precision, and confidence is beyond the scope of this document. The three major measurement & verification guidelines (IPMVP, FEMP M&V Guidelines, and ASHRAE Guideline 14) all provide significantly more information on sampling plan development and evaluation.

Monitoring Duration

There is no single duration that can be applied to all situations. In general, the monitoring duration should be long enough to capture the likely range of expected behavior, but not longer. Building lighting operating hours could take as little as one week, unless that week happens to be during Christmas vacation. Select a monitoring period that is representative of typical behavior.
For systems that respond to weather-sensitive loads, it may take several weeks or several months to capture a full range of behavior. If full-load conditions are desired, then air-conditioners should be observed in the summer and furnaces in the winter. If part-load conditions are desired or acceptable, a spring or fall period might work.

Data Logger Installation

While data loggers are simple to operate and deploy, installation may require reaching in to live electrical cabinets or equipment with moving parts. Following are some safety and quality assurance guidelines to follow.

Safety

Current and true-power transducers may require installation in live electrical cabinets, offering the potential for lethal accidents. Current transducers do not require a physical connection with a conductor, but working in close proximity to unshielded connections is dangerous regardless of the voltage. True-power transducers require a physical connection to a conductor on each circuit phase. ALWAYS wear insulating gloves rated for at least 600 VAC and safety glasses when working in live electrical cabinets. If you have any doubts about your ability to work in a live electrical cabinet, have a trained electrician install the data logger at your direction. You may also need to refer to your local building code as some states require the electrical work be performed by a licensed electrician. NEVER work in a live electrical cabinet where more than 480 VAC may be present.

In some facilities, union shop or safety rules prohibit non-employees from working on any electrical equipment. Check with the supervisor or shop steward before proceeding with any logger installation. A complete discussion of electrical safety is beyond the scope of this document. Please refer to NFPA 70E: Standard for Electrical Safety in the Workplace for additional guidance.

Air handlers and rooftop units contain belt-driven rotating parts. Avoid working in any area where you could accidentally catch fingers, loose clothing, or equipment in moving parts. If the parts are stationary, do not assume that they will remain so unless the power has been removed. HVAC equipment starts and stops in response to external controls. Find another access point away from the moving parts or remove the power.

While personal safety is paramount, consider the safety of the data logger, sensors, and customer equipment as well. Secure data loggers and sensors with wire ties or electrical tape to prevent them from falling off and becoming tangled in moving equipment.

If you have any doubts about your ability to work in a live electrical cabinet, have a trained electrician install the data logger at your direction. You may also need to refer to your local building code as some states require the electrical work be performed by a licensed electrician.
Quality Assurance and Secondary Measurements

Not every data logger installation will go perfectly – the wrong sensor (or setting) may be used during installation, sensors may be connected to the wrong wire or placed in the wrong location, or the actual value of the parameter may exceed the expected value.

When installing data loggers, it is useful to take live readings from the data logger to ensure that the logger is working and the sensors are connected properly. Or, if using a web-based energy logging system, it should be possible to simply log onto the Internet to remotely access system diagnostics and ensure proper system functionality. When monitoring true power, ensure that the current transducers are pointing in the correct direction and that the voltage probes are connected to the correct phase – it makes a difference!

Secondary measurements help ensure that the data logger is reading the correct value. When installing current or true-power transducers, take readings with a clamp-on ammeter or another (calibrated) true-power meter and note the exact time the reading was taken. This can then be compared to the downloaded data to ensure that the data logger reading is reliable. The same principle applies to temperature measurements.

Despite the steps taken above, problems may still arise. Download the data—at the site if possible—and observe the graph using accompanying graphing and analysis software, such as Onset HOBOware software. Does the data make sense? Do the observed values exceed the transducer capacity? Did a voltage probe fall off a terminal? Is the data all zeros? Identifying problems immediately allows corrective steps to be taken while on site.
Data Evaluation

Specialized graphing and analysis software packages such as HOBOware® have many useful plotting and data evaluation features and can export data to other spreadsheet programs for additional manipulation and calculations. Following are some points to consider when interpreting collected data.

Most portable data loggers have accompanying graphing and analysis software that can be used to activate and readout data loggers, and graph and analyze results.

Software applications such as Onset’s HOBOware and HOBOWare Pro software, provide a highly intuitive “point-and-click” interface that eliminates the need for programming. The user simply connects the data logger to a Windows or Mac computer and the software automatically recognizes the device and asks a series of configuration questions. This includes setting a sampling interval and selecting an immediate or designated future logger activation time.

In terms of graphing and analyzing data, packages such as HOBOware allow you to analyze and extract key information from multiple data loggers with a few simple clicks, and combine multiple graphs to compare data between sites.

Software with alarm capabilities provides instant notification via cell phone or email if conditions exceed set thresholds. Data export capabilities are also provided for users that need to perform further data analysis using Microsoft® Excel® or other spreadsheet programs.

Data Manipulation in Excel

Microsoft Excel can combine data from multiple sources, such as data loggers and building-automation systems. Onset offers a video tutorial on using Excel to evaluate logger data. See http://www.onsetcomp.com/excel.

Graphing

Excel provides significant control over the display of data. The first step to creating a graph is to open the .CSV data file and select the timestamp plus the columns of interest — the observation number column is not needed. In the following example, the time, temperature, and relative humidity have been selected.
Using the first column of data as the X-axis value allows better scaling, selection of specific time periods, and the ability to add data with different date ranges and frequencies.

Then select Insert > Chart or click on the Chart Wizard. Select type “XY (scatter),” sub-type line. This will make a graph that can be scaled and formatted much more easily than a graph made with the “line” graph option.

In Excel, a “line” graph is extremely limited in how it can represent data. It plots all observations sequentially without regard to the X value. This makes it impossible to scale the graph, select limited portions, or plot additional data with a different data collection frequency or start time. The “XY (scatter)” graph is a far better option. Using the first column of data as the X-axis value allows better scaling, selection of specific time periods, and the ability to add data with different date ranges and frequencies.

For example, to view just a portion of the data requires only changing the X-axis format and scale. Double-click on the X axis and select “scale.” The minimum and maximum will appear to be two numbers approximately 40,000 in magnitude — this is how Excel stores dates internally. (The date is the number of days since 1/1/1900). Simply enter the desired date range in MM/DD/YYYY format and Excel will make the conversion. If you want to set the major unit for 12 hours, use 0.5 (1/2 a day).
To add additional data to the graph – even data with a different observation frequency – copy the data of interest and include the timestamp in the left-most column. Then go to the graph and selected edit > paste special, and accept the default options.

The new data will use the new timestamps on the plot so that all data points are aligned and synchronized with the X axis. Be certain that you save your work as an Excel file or you will lose your graphs!

Synchronizing Observations

A common situation is trying to work with data recorded at different intervals. For example, rooftop unit power measured in 15-minute increments is to be compared to hourly weather data. One approach is to expand the weather data to 15-minute intervals.

To expand the hourly data so that each 15-minute observation has a corresponding weather observation, the easiest approach is to use the VLOOKUP function. This is a database function that matches the timestamp in one column with the timestamp in another column and brings back the associated information. The function takes the form VLOOKUP (lookup value, lookup array, column, type). In the following example, the VLOOKUP function is used to align 15-minute temperature observations with hourly weather data.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Recorded Data from Hobo</td>
<td></td>
<td>Data from Weather File</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Time, GMT-07:00</td>
<td>Temp, °F</td>
<td>Wet Bulb Temp, °F</td>
<td>Date/Time</td>
<td>Wet Bulb Temp, °F</td>
</tr>
<tr>
<td>3</td>
<td>12/25/09 11:15</td>
<td>67.4</td>
<td>~VLOOKUP(A3,A3:D3:SF$602,TRUE)</td>
<td>12/25/09 12:00</td>
<td>31.4</td>
</tr>
<tr>
<td>4</td>
<td>12/25/09 11:30</td>
<td>67.9</td>
<td>#N/A</td>
<td>12/25/09 13:00</td>
<td>34.8</td>
</tr>
<tr>
<td>5</td>
<td>12/25/09 11:45</td>
<td>66.1</td>
<td>#N/A</td>
<td>12/25/09 14:00</td>
<td>33.4</td>
</tr>
<tr>
<td>6</td>
<td>12/25/09 12:00</td>
<td>68.8</td>
<td>31.4</td>
<td>12/25/09 15:00</td>
<td>33.9</td>
</tr>
<tr>
<td>7</td>
<td>12/25/09 12:15</td>
<td>69.2</td>
<td>31.4</td>
<td>12/25/09 16:00</td>
<td>37.1</td>
</tr>
<tr>
<td>8</td>
<td>12/25/09 12:30</td>
<td>69.6</td>
<td>31.4</td>
<td>12/25/09 17:00</td>
<td>36.8</td>
</tr>
<tr>
<td>9</td>
<td>12/25/09 12:45</td>
<td>69.3</td>
<td>31.4</td>
<td>12/25/09 18:00</td>
<td>37.8</td>
</tr>
<tr>
<td>10</td>
<td>12/25/09 13:00</td>
<td>68.4</td>
<td>34.8</td>
<td>12/25/09 19:00</td>
<td>39.6</td>
</tr>
<tr>
<td>11</td>
<td>12/25/09 13:15</td>
<td>67.5</td>
<td>34.8</td>
<td>12/25/09 20:00</td>
<td>39.6</td>
</tr>
<tr>
<td>12</td>
<td>12/25/09 13:30</td>
<td>67.6</td>
<td>34.8</td>
<td>12/25/09 21:00</td>
<td>40.3</td>
</tr>
<tr>
<td>13</td>
<td>12/25/09 13:45</td>
<td>66.6</td>
<td>34.8</td>
<td>12/25/09 22:00</td>
<td>39.8</td>
</tr>
<tr>
<td>14</td>
<td>12/25/09 14:00</td>
<td>69</td>
<td>33.4</td>
<td>12/25/09 23:00</td>
<td>35.9</td>
</tr>
</tbody>
</table>
The VLOOKUP function in cell C3 takes the timestamp in A3 and finds the closest value greater than the timestamp in the array E3:F60. (The "$" signs keep the array the same when pasting the equation into other cells.) The “2” tells the function to return the value in the second column; the TRUE tells the function that the array is sorted and that it is acceptable to return the closest value rather than an exact match. The first few cells return “#N/A” because the original timestamp values are less than those in the array.

Analyzing Runtime Data

Data loggers that record runtime, such as the HOBO UX90 Series (lighting, motors), do not measure variables at defined intervals. Instead, they record the time when the state changes between on and off. Because of the random nature of state changes, calculations and graphing can be a little more difficult.

Since we are usually interested in the “on” time, calculate the interval between the previous “on” state and the current “off” state. In the following example, the cells in column C test to see whether the state is “on” or “off.” If the current state is off, the interval is simply the “off” time minus the “on” time. Multiplying the difference by 24 returns the result in hours, which are then totaled. The double-quotes in the last field tell the IF statement to return a blank value, which is ignored when the values are summed.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Date/Time</td>
<td>State</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6/17/09 16:36 OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6/19/09 17:27 ON</td>
<td></td>
<td>=IF(B3="OFF",24*(A3-A2);"")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6/19/09 21:09 OFF</td>
<td></td>
<td></td>
<td></td>
<td>3.7</td>
</tr>
<tr>
<td>5</td>
<td>6/19/09 21:21 ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6/19/09 22:47 OFF</td>
<td></td>
<td></td>
<td></td>
<td>1.4</td>
</tr>
<tr>
<td>7</td>
<td>6/20/09 0:31 ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6/20/09 1:40 OFF</td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>9</td>
<td>6/20/09 2:58 ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6/20/09 3:28 OFF</td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>11</td>
<td>Total Hours</td>
<td></td>
<td></td>
<td></td>
<td>6.3</td>
</tr>
</tbody>
</table>

Allocating “on” times into specific periods (occupied/unoccupied or weekday/weekend) is complicated by the fact that the “on” state can be any duration and may span more than one period. One way to accomplish this is to use the VLOOKUP function to synchronize observation, as discussed previously. Create a column of timestamps in hourly (or other) intervals and use the VLOOKUP function to return the on/off status.

Common Equations

Other useful manipulations include condensing data into hourly (or daily) values, segregating into weekend or unoccupied periods, and determining whether a motor is on or off. Excel provides the following functions that extract information from the timestamp fields, make comparisons to other values, and combine results using Boolean operators.
For example, to differentiate observations between occupied and unoccupied periods, add columns that determine whether the day of the week is a weekend or weekday and whether the building is occupied based on the hour. In the following example, the building is occupied Monday through Friday from 8 AM to 5 PM. The “Weekday” column tests to see if the day is Monday through Friday, the “Hour” column tests to see if the hour is between 8 AM and 5 PM, and the “Occupied” column combines the logical results to determine if the corresponding observation occurs Monday through Friday between 8 AM and 5 PM.

To calculate average, maximum, minimum, number of observations, or standard deviation values by occupied/unoccupied periods, learn to use pivot tables within Excel. Pivot tables segregate a dataset by user-defined fields and perform arithmetic calculations on each group. A discussion of pivot tables is beyond the scope of this document.
Choosing Data Loggers

Data loggers, of course, are not all the same and with so many choices available today, it can be challenging to know which one is right for your application. Following are some important factors to consider when evaluating data loggers.

Accuracy specifications vary widely among different data loggers, so when shopping around be sure to look for accuracy charts that indicate accuracy over an entire measurement range – not just a single value.

Measurement Accuracy

Once you know what parameters you’ll be measuring, you need to make sure to choose a data logger that provides the accuracy you need. Accuracy specifications vary widely among different data loggers, so when shopping around be sure to look for accuracy charts that indicate accuracy over an entire measurement range – not just a single value. As a general rule, it’s good to look for a data logger that will provide at least twice the accuracy of what your application requires.

Another important factor is data logger resolution, which refers to the number of increments of a value a data logger is capable of reporting. This is important if you plan to deploy a logger for months at a time, or want the logger to record data in 10-second intervals. You should also ask about a logger’s response time.

If you’re unsure about your application’s accuracy and resolution requirements, an experienced supplier should be able to help you determine which product will meet your needs.

Software and Ease of Configuration

All data loggers use software for setup and configuration, but some loggers require more customization than others. User-friendly loggers can be set up and launched by someone with no training in electrical wiring or programming.

Once connected either via PC, wirelessly, or through an app, the software should automatically recognize the device and ask a series of configuration questions. The user simply chooses a sampling interval and selects an immediate or designated future launch time. There is no wiring or programming involved, even for multi-component weather stations.

Ask about the software that comes with the data logger. Applications are generally Windows-based, but some manufacturers also make Macintosh versions, and some have apps for mobile devices. The software should enable you to quickly and easily perform tasks such as setting configuration parameters, designating launch times, and off-loading data with point-and-click simplicity.
Check the software’s graphing and analysis capabilities, including whether you can combine graphs to compare data between sites, or if you can view all of a site’s data clearly in a single graph. Depending on the scope and type of data, the manufacturer may also have special application-specific software available.

There are a number of other capabilities to look for. For example, the software should allow you to select a range of data in a graph, and display the maximum, minimum, average, and standard deviation for the measurements in that range. It should also allow you to save data analysis projects for future use.

Finally, since data often needs to be passed into other software programs such as spreadsheets or modeling programs, make sure that the logger software allows you to quickly and easily export data. Also be sure that you can print graphs and tables, which is especially important for documentation purposes.

Communications

One feature that may make deployment and data collection easier and safer is wireless communications. Two different options are available, each offering its own advantages. Self-healing Mesh technology can be used for medium-range networking within a building allowing near real-time data collection and trending capability. Bluetooth Smart can be used for short-range communications with temperature/RH loggers with mobile devices.

The HOBO ZW series data loggers and routers can be used to construct a small temporary or long-term data collection network. This can be of tremendous value where near real-time monitoring is needed or frequent physical access is not desirable, such as building rooftops or locked mechanical rooms. Sensor-to-router range can be up to 300’; larger networks can be constructed using additional routers.

The HOBO MX1101 temperature/RH data logger can be configured and read out up to 100’ away using the HOBOmobile App and an iOS or Android mobile device that is Bluetooth Smart compatible. Data can be immediately reviewed on the mobile device and then transferred back to a computer for further analysis in HOBOware or Excel.

Battery Life

Data loggers are generally extremely low-power devices. However, because they are used in a variety of environmental conditions and sample at different rates, battery life can vary widely. As a general rule of thumb, make sure the data logger you select has a battery life of at least one year.

Most logger manufacturers’ software will indicate when the logger’s battery power is getting low. You may also want to ask your supplier about whether or not the data logger battery is user-replaceable, as this can eliminate the time and expense of having to ship the logger back to the manufacturer for battery replacement.
Memory

The storage capacity of a data logger can vary widely between models. In general, be sure to buy a logger that provides enough on-board memory to cover the sampling rate and deployment duration you need. If you are unsure of how often you will be able to offload and re-launch your deployed data loggers, it may be best to buy a logger with more memory to prevent any gaps in data.

Cost of Ownership

Today’s battery-powered data logging devices are very reasonably priced, and can be a real value if you plan to use them over and over again in multiple applications. It is, however, important to look closely at the total cost of ownership when shopping around. Will the logger need to be periodically calibrated by the manufacturer, and if so, how much will it cost over time? How much does the software cost? How much will you have to spend on cables and structural components for a weather station? Asking these questions will help you understand the true cost of owning the data logger over the long term.

Product Support

Data loggers should be easy to use and not require a great deal of technical assistance. However, as with any high-tech product, there will always be questions.

Seek out a supplier offering a range of product support services. These often start with the initial assessment of your application requirements, and should include telephone and Internet-based support resources.

Does a potential supplier have the track record and financial stability to maintain its role as a long-term solutions provider? Be assured that the company will be there to meet your future data logging requirements. Finally, ask the supplier for application notes and other references to gain a sense for how its loggers perform in applications similar to yours.
References

Commissioning

Building Commissioning Association
www.bcxa.org

California Commissioning Collaborative
www.cacx.org

Portland Energy Conservation Inc.
www.peci.org

Measurement & Verification

Efficiency Valuation Organization
www.evo-world.org

US Department of Energy
http://energy.gov/eere/femp/resources-implementing-energy-savings-performance-contracts

American Society of Heating, Refrigeration, and Air-Conditioning Engineers
www.ashrae.org

Sampling for M&V: Reference Guide
Bonneville Power Administration (2011)

Safety

NFPA 70E: Standard for Electrical Safety in the Workplace (2015)
National Fire Protection Association
www.nfpa.org

Electrical Safety: Safety and Health for Electrical Trades Student Manual
NIOSH Publication No. 2009-113
National Institute for Occupational Safety and Health
www.cdc.gov/niosh/docs/2009-113/default.html
Other informational resources available from Onset:

Choosing a Temperature Data Logger

This paper provides guidance on features to consider when choosing a temperature data logger, including accuracy requirements, data access needs, software packages, power requirements. It also includes real-world application examples illustrating how users have incorporated portable data loggers into their temperature monitoring projects.

Choosing an Occupancy and Light On/Off Data Logger – 5 Important Considerations

This paper provides guidance on features to consider when choosing an occupancy and light on/off data logger, including calibration, LCD display, logger accuracy and range, speed of deployment, and time-saving software. Learn how to select the right logger for identifying ideal locations in your building where changes in lighting could result in cost savings up to 80%.

Utility Incentive Programs: How to Get More Money Quickly and Easily

“Utility Incentive Programs: How to Get More Money Quickly and Easily,” is aimed at making the process of applying for and receiving energy efficiency incentives and rebates faster, easier, and more rewarding. Authored by Carbon Lighthouse, an energy firm that makes it profitable for commercial and industrial buildings to eliminate their carbon footprint, the paper discusses the two main types of incentive and rebate programs, how utility efficiency program managers think, and how to use data to get more incentive dollars for your projects.

Using Data Loggers to Improve Chilled Water Plant Efficiency

Chilled water plant efficiency refers to the total electrical energy it takes to produce and distribute a ton (12,000 BTU) of cooling. System design, water quality, maintenance routines, cooling tower design, and cooling coil load all affect chiller water plant efficiency and the expense of operating the system.

Data Logger Basics

In today’s data-driven world of satellite uplinks, wireless networks, and the Internet, it is common to hear the terms “data logging” and “data loggers” and not really have a firm grasp of what they are.

Most people have a vague idea that data logging involves electronically collecting information about the status of something in the environment, such as temperature, relative humidity, or energy use. They’re right, but that’s just a small view of what data logging is.

Addressing Comfort Complaints With Data Loggers

This paper offers facility managers, HVAC contractors, and others with valuable tips on how low-cost data loggers can be used to validate temperature-related comfort complaints.

Monitoring Green Roof Performance with Weather Stations

Data logging weather stations are the ideal tools for documenting green roof performance. A weather station can measure weather parameters such as rainfall, stormwater runoff, temperature, relative humidity, wind speed, solar radiation, and a host of non-weather parameters such as soil moisture on a continuous basis (say every five minutes, hourly, or an interval appropriate to the situation).

Using Data Loggers Beyond Equipment Scheduling

While data loggers are a great tool for identifying equipment-scheduling opportunities in buildings, their usefulness far exceeds just that one function. This paper discusses how the use of inexpensive data loggers and some spreadsheet analysis can provide all the evidence needed to make powerful building-specific cases for saving money by replacing failed air-handler economizers. It also describes how information from data loggers can be used to accurately calculate the energy savings that can be realized from variable frequency drives (VFDs) on pumps and fans, supply air resets, and boiler lockouts.

Analyzing Air Handling Unit Efficiency with Data Loggers

Operating a heating, ventilation and air conditioning (HVAC) system at optimum efficiency in a commercial setting is complicated, to say the least. There is a very real chance that any number of setpoints, levels, and feedbacks at boilers, chillers, pumps, fans, air delivery components and more can cause costly inefficiencies.

Finding Hidden Energy Waste with Data Loggers: 8 Cost-Saving Opportunities

The first step to reducing building energy costs is identifying energy waste. Statistics on utility bills or name plates on equipment, while useful, are not enough to identify what practices and equipment are contributing to high energy use. Portable data loggers can be used to obtain critical energy use information in a wide range of commercial building types – from manufacturing plants to office buildings.

Monitoring HVAC Performance with Data Loggers

Building operators and managers have the difficult job of providing comfortable working conditions and coaxing aging mechanical equipment to operate at peak performance while minimizing energy costs.

Access our full resources library at: www.onsetcomp.com/resources
About Onset

Onset is a leading supplier of data logger and monitoring solutions used to measure, record and manage data for improving the environment and preserving the quality of temperature-sensitive products. Based on Cape Cod, Massachusetts, Onset has been designing and manufacturing its products on site since the company’s founding in 1981.

About the Author

About the author: Mark Stetz, P.E., CMVP, BEAP, is principal and owner of Stetz Consulting LLC.

His company provides energy-efficiency consulting services, energy audits, measurement & verification, economic analysis, and training. With over 20 years in the energy efficiency field, he has contributed to the IPMVP and FEMP measurement & verification protocols, supported the DOE FEMP performance contracting program, and conducted training workshops worldwide. Mr. Stetz is an ASHRAE member and holds registered professional engineer licenses in Colorado and California.

For more information, see www.stetzconsulting.com

Contact Us

Our goal is to make your data logging project a success. Our product application specialists are available to discuss your needs and recommend the right solution for your project.

Sales (8am to 5pm ET, Monday through Friday)
- Email sales@onsetcomp.com
- Call 508-759-9500
- In US call toll free 800-564-4377
- Fax 508-759-9100

Technical Support (8am to 8pm ET, Monday through Friday)
- Email loggerhelp@onsetcomp.com
- Call 508-759-9500
- In US call toll free 877-564-4377

Onset Computer Corporation
470 MacArthur Blvd.
Bourne, MA 02532

Copyright © 2017, Onset Computer Corporation. All information in this document is subject to change without notice. Onset and HOBO are registered trademarks of Onset Computer Corporation. All other trademarks are the property of their respective owners. All rights reserved. Printed in the USA. Lit. No. MKT1185-0217